MLE AgentBlog ↗Blog ↗ (opens in a new tab)Youtube ↗Youtube ↗ (opens in a new tab)Product ↗Product ↗ (opens in a new tab)
GitHubGitHub (opens in a new tab)DiscordDiscord (opens in a new tab)
  • Overview
  • Quick Start
  • Tutorial
    • Quick Start with a Public Dataset
    • Report Your Progress and Plan
    • Start a Kaggle Task
    • Train an Edge Model with Your Own Csv Data
    • Use Ollama for Your Tasks
  • Video
    • We Are Ranked No2 on GitHub Trending
  • Roadmap
  • Contributing
  • Changelog
    • 0.4.0
  • Overview
  • Quick Start
  • Tutorial
    • Quick Start with a Public Dataset
      • 1. Create a new project
      • 2. Start the project
      • 3. Use public datasets
      • Next Steps
    • Report Your Progress and Plan
    • Start a Kaggle Task
    • Train an Edge Model with Your Own Csv Data
    • Use Ollama for Your Tasks
  • Video
    • We Are Ranked No2 on GitHub Trending
  • Roadmap
  • Contributing
  • Changelog
    • 0.4.0
  • Blog ↗ (opens in a new tab)
  • Youtube ↗ (opens in a new tab)
  • Product ↗ (opens in a new tab)

On This Page

  • 1. Create a new project
  • 2. Start the project
  • 3. Use public datasets
  • Next Steps
Question? Give us feedback → (opens in a new tab)Edit this page
Tutorial
Quick Start with a Public Dataset

Quick Start with A Public Dataset

If you want to train a model with a public dataset, you can follow this tutorial.

1. Create a new project

mle new <project-name>
 
cd <project-name>

2. Start the project

mle start

3. Use public datasets

use-public-datasets

Next Steps

You can follow the Train an Edge Model with Your Own CSV Dataset tutorial for the rest of details.

TutorialReport Your Progress and Plan

MLE Agent